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Accurate Subcritical Damping Solution of Flutter Equation
Using Piecewise Aerodynamic Function

Charles Goodman*
The Boeing Company, St. Louis, Missouri 63166-0516

An alternative to the p-k method for accurate subcritical damping solution is presented. By combining the
concepts used in rational function aerodynamics and using the piecewise aerodynamic interpolation function
commonly used for the £ method, a piecewise aerodynamic flutter equation is defined, which provides for accurate
noncritical damping. A solution of the piecewise flutter equation is described, which is noniterative and which can
be used to get results at a single velocity. The resulting flutter method provides a solution of the flutter equation
with accurate subcritical damping that is efficient and reliable.

Nomenclature

coefficients in the rational function approximation
(RFA)

piecewise quadratic generalized aerodynamic
force interpolation function coefficients
reference length

added structural damping for &k method
imaginary part of complex number
imaginary constant = sqrt(—1)

reduced frequency (bow/ V')

range of reduced frequency

generalized mass and stiffness

generalized aerodynamic forces as computed
by the doublet lattice method

RFA for generalized aerodynamic forces
piecewise quadratic generalized aerodynamic
forces interpolation function

RFA for generalized aerodynamic forces in the
Laplace domain

piecewise quadratic generalized aerodynamic
forces function

= generalized coordinate

Laplace variable

velocity and density

= circular frequency
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Introduction

LUTTER is instability caused by the coupling of aerodynamic

forces with the structural forces of a flexible structure. There
are three principal interests in analysis of the flutter phenomenon.
The first is the calculation of the velocity at the onset of flutter. The
second is the trend of the modal frequency and damping charac-
teristics vs velocity before the onset of flutter. The third interest in
flutter is the interaction of these forces with a control system.

The velocity at the onset of flutter is the point at which the cou-
pling of the structural forces and the aerodynamic forces cause the
system to become unstable. The k method flutter solution' is the
most common technique used for this analysis. This method is very
reliable and cost effective. A spline is typically used to interpolate
the aerodynamic forces for a large list of reduced frequencies. A
solution is computed at each reduced frequency, and the roots must
then be sorted. However, for this method, only the flutter crossing
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is correct. The frequency and damping values before and after the
crossing are not reliable.

Subcritical frequency and damping results can be compared with
measured data to evaluate the accuracy of the analytical models and
thus the accuracy of the predicted flutter velocity. Also, an experi-
enced flutter analyst may draw conclusions from the frequency and
damping vs velocity curves that lead to structural modifications to
extend the flutter velocity. In both cases, the frequency and damping
values should be as accurate as possible.

Two methods are most commonly used to obtain accurate subcrit-
ical damping for a flexible aircraft, the p-k method, and transient
flutter. The p-k method® repeatedly interpolates for the required
aerodynamicsas it iterates to find each eigenvalue. A spline or other
function is defined to interpolate the aerodynamics to the required
reduced frequency, which is determined from the eigenvalue from
the previous iteration. The p—k method is more costly than the k&
method and problems with convergence can occur. Transient flutter
uses a rational function approximation (RFA) of the aerodynamic
forces.? This method tries to define a single function to represent the
aerodynamic forces over a wide range of reduced frequency. This
step can be difficult and time consuming. However, once the RFA
is defined the flutter solution is straightforward.

The interaction of an aeroelastic system with a control system is
known as aeroservoelasticity (ASE). The most common approach
to ASE is to create a linear differentialequation, in state-spaceform,
of the aeroelastic dynamics so that it can be easily coupled with a
linear model of the control system, also in state-space form. There
are three primary methods used to create this model. The first and
most common methodis based on RFA aerodynamics,as in transient
flutter. For ASE the definition of the systeminputs (control surfaces)
and outputs (control sensors) is additionally required. The second
methodis implementedin the FAMUSS (Flexible AircraftModeling
Using State Space) program,* and uses an equivalentsystem method
to create the ASE model. This technique uses an eigenvaluesolution
of the flutterequation with accurate frequencyand damping to define
the dynamic matrix of the state-space model. The rest of the ASE
model is defined by a fit of the transfer function responses. The
third method is the P-transform method.® It also requires a flutter
solution with accurate frequency and damping to define the state-
space dynamic matrix and makes use of the flutter eigenvectors to
create the rest of the ASE model.

Background on Various Flutter Solution Methods
The basic aeroelastic equations of motion are given by Eq. (1). It
is usually defined in generalized or modal coordinates to reduce the

number of degrees of freedom.
MG+ Kq—1pV?Q()g = 0 (1)

The aerodynamic forces Q(k) are a function of reduced fre-
quency. The use of these aerodynamics is in and of itself an
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approximation because they are only valid for oscillatory motion.
Also, they are typically computed at a list of discrete reduced fre-
quencies. Thus, a direct solution of Eq. (1) is not possible. To solve
it, some approximation of these aerodynamics must be done. The
three commonly used solutions are the kK method, the p-k method,
and transient flutter. The primary differences in these methods are
the type of damping and the treatment of the aerodynamics.

k Method Flutter

The k-method flutter equation is given by Eq. (2). The damping
here is added structuraldamping, the inertiaand aerodynamicforces
are for purely oscillatory motion.

{M—10 +ig)/ 1K + (pb} [2°) 0N }g =0 ()

The aecrodynamic forces Q (k) are typically computed for a small
set of discrete reduced frequencies and then interpolated to a larger
setof reduced frequencies. The equationis then solved for the eigen-
value A = (1 +ig)/w? at each interpolated reduced frequency. The
frequencyand dampingcharacteristicscome directly fromthe eigen-
value, butthe velocityis computed from the reduced frequency given
the eigenvalue frequency.

p-k Method Flutter

The p-k method flutter equation is given by Eq. (3). The damp-
ing here is a rate-of-decay type but is only applied to the inertia
forces. The inertia forces are for damped motion, but the aerody-
namic forces are treated as complex stiffness and therefore are only
for purely oscillatory motion.
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Fig. 1a Roots x; from all of the piecewise flutter equations (where the
aerodynamic forces are valid from k; to k; , 1) at a single velocity.
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Fig. 1b Collection of roots with valid frequencies at a single velocity.

An iterative scheme is used to find each eigenvalue at a given
velocity and density. At each iteration new aerodynamic forces are
obtained using a spline or other interpolation function based on
the eigenvalue frequency from the earlier iteration. The iterations
continue until the eigenvalue frequency converges. This iterative
method requires an initial estimate of the imaginary part of each
eigenvalue. These are typically determined by extrapolating from
results at preceding velocities. The natural frequencies are used to
estimate the reduced frequency at the first velocity.

Transient Flutter Method

The transient flutter equation [Eq. (4)] is effectively the direct
Laplace transformationof Eq. (1). Thus the damping is true Laplace
damping, and both the inertia forces and the aerodynamicforces are
for damped motion.

[Ms* + K —$pV20,(9)]a =0 @)

This equationrequires the unsteady aerodynamic forces to be ex-
pressed in the Laplace domain, which are not typically available
and are therefore approximated. An RFA is used for the aerody-
namic forces. The RFA defines an equation that describes the aero-
dynamic forces over a wide range of frequency. A typical RFA
uses a quadratic with additional lag terms. A fit of a set of known
aerodynamics determines the coefficients of the equation. Once de-
termined, the RFA equation, which was based on oscillatory aero-
dynamic forces, is used as an approximation of the aerodynamic
forces for damped motion. At this point the solution of the flutter
equation is straightforward.
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Fig. 2a Tracking a single mode (root x;) as velocity varies from all of
the piecewise flutter equations (where the aerodynamic forces are valid
from kj to kj . 1).
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Fig. 2b Collection of roots with valid frequencies that have been
tracked as velocity varies.
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Fig. 3 Discontinuity in the flutter equation from one range of reduced
frequency to the next may cause overlaps and gaps.

Background on the Various Treatments
of the Aerodynamics

Each of the flutter solution methods just discussed treats the aero-
dynamics in a unique way. Each method must do this because the
unsteady aerodynamics are not typically available in the Laplace
domain. The most common method of producing the aerodynamic
forcesis the doublet lattice method,® which is only valid for oscilla-
tory motion. This method defines the aerodynamicforces at specific
reduced frequencies. Because of the significant computer resource
costs, the list of reduced frequencies at which they are computed is
typically rather small, around 10. Cunningham and Desmarais gen-
eralized the subsonicunsteady aerodynamickernel functioninto the
Laplace domain.” Their method provides a means of defining aero-
dynamic forces for damped motion, but they must be computed over
a two-dimensional space, frequency and damping, which greatly
increases the computational costs.

Piecewise Interpolation Function

One treatment of the aerodynamicsdefines an interpolation func-
tion thatcanbe used to approximatethe aerodynamicsatany reduced
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Fig. 4 p-k flutter solution for the cantilevered lifting surface test case at 0.9 Mach with six symmetric modes.
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frequency within the original range. Generally the interpolation
function is a piecewise quadratic or cubic spline defining an in-
terpolation function for each interval of reduced frequency. This is
commonly used in both k-method flutter solutions and p—k method
solutions.

Equation (5) gives a typical quadratic piecewise interpolation
function for a k-method flutter solution. The coefficients for each
interval of reduced frequency are computed using four points, two
on each side, and is referred to as an averaged quadratic.

2
Ol =Y (k"4 ky <k kg 5)

m=0

Each function matches the aerodynamic forces at the end points
of its interval. The first and last intervals use three points. Unlike a
cubic spline no constraints are placed on the function derivatives.

Rational Function Approximation

Another treatment of the unsteady aerodynamic forces is with
an RFA. This technique is similar to the interpolation function just
described except this method defines a single function that approx-
imates the unsteady aerodynamic forces over the entire range of
reduced frequencies for which they have been computed. Lag terms
are added to enable the functionto be used for the entire reduced fre-

quency range. The coefficients are typically determined by a least-
squares fit of the computed aerodynamic forces. It may be difficult
to define an equation that fits the aerodynamic forces adequately
over the entire range of reduced frequency.

Equation (6) gives a typical RFA representation of the unsteady
aerodynamics as a function of reduced frequency (with imaginary
value included). Key to the accuracy of the fit is the number of lag
terms and the choice of lag constants §,, _»

k)A,,
Oulit) = Z(zk) A, +Z(,f)’+)ﬂ - ©

Other RFA representations optimize the lag constants or use a
state-space notation that defines a lag matrix. The RFA function is
still only valid for purely oscillatory motion. Regardless of the form
of the RFA, itcanbe used to approximatethe unsteady aerodynamics
in the Laplace domain by substituting the scaled complex Laplace
variable (sby/ V) for the imaginary value (ik) [Eq. (7)].

2 b \" J (5)A
o _ mf Yo - m
Q.\-(S)—";S <V> Am+mZ=;(s)+/3m,z(V/bo) @

The substitution of a scaled Laplace variable for the reduced
frequencyis used forboth ASE and transientflutter. This substitution
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Fig. 5a Piecewise solutions that make up the PA flutter solution for mode 2 for the cantilevered lifting surface test case at 0.9 Mach with six symmetric
modes.
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was determined by Cunningham and Desmarais to be fairly good
for low reduced frequencies and low damping.’ It approximates the
aerodynamic forces for damped motion from those computed for
oscillatory motion. This differs somewhat from simply using the
oscillatory aerodynamic forces for damped motion as done in the
p-k flutter method.

Piecewise Aerodynamic Flutter Method

The piecewise aerodynamic (PA) flutter method makes use of
concepts utilized in the k-method flutter solution, in transient flutter
using RFA and in the p-k flutter method. The PA interpolationfunc-
tion used for the k method defines the acrodynamic forces for each
interval of reduced frequency. Each equation, one for each range of
reduced frequency, is used to approximate the aerodynamic forces
in the Laplace domain as done with RFA aerodynamicsfor transient
flutter. The roots of each of these equations are solved with generic
matrix methods. The roots with a frequency within the range for
which the aerodynamics were valid are accepted as done in the p-k
method.

A substitution similar to that used for RFA [Egs. (6) and (7)]
is applied to each k-method aerodynamic interpolation function
[Eq. (5)] to define the aerodynamic forces in the Laplace domain.
Equation (8) defines these approximated aerodynamic forces in the
Laplace domain by substitutingthe scaled complex Laplace variable
sby/iV for the real reduced frequency k. Each of these functions is

effectively an RFA with no lags. No lag terms are required because
the function must only match the computed aerodynamic forces at
two reduced frequencies, but each is only valid for the specified
range of frequency. The imaginary portion of the Laplace variable,
frequency of oscillation,is used to determine when the aerodynamic
forces are valid.

2 m
A b . Im(s)b
0/(s) = § Sm(%) Al kjf%fijrl (8)

m=0

This aerodynamic force function is inserted into the Laplace flut-
ter equation used for transient flutter [Eq. (4)] resulting in Eq. (9).
Now we have a series of Laplace domain equations each of which
are valid for frequency of oscillations within a range defined by the
interval of reduced frequency.

{[M = 1V2by/iV)2A]]s* — LV2(by /i V) Al (s)
+K—1viAllg =o, ki < Im(s)by/V <kjy (9)

When each of these equations is solved for its roots, only those
roots with frequencies within the range of reduced frequency for
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Fig. 5b Piecewise solutions that make up the PA flutter solution for mode 3 for the cantilevered lifting surface test case at 0.9 Mach with six symmetric

modes.
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which the aerodynamics are valid are in fact a solution to the equa-
tion. This is similar to the p—k method that iterates until a root is
found that has a frequency matching the reduced frequency of the
aerodynamics, which were used. The differencein the PA method is
that all of the roots for each piecewise flutter equation are computed
using generic matrix methods, which do not require iteration, and
then only those roots in the proper frequency range are accepted.
Thus all roots are found with N-1 eigenvalue solutions, where N
is the number of reduced frequencies for which the aerodynamic
forces were computed.

The rest of this section uses fictionalized data created for the
purposeof demonstratingthe PA flutter method and do not represent
an actual test case.

Figure 1a shows a collection of roots plotted in the complex plane
from the solution of each of three piecewise flutter equations. In
this fictional example there are five modes. Each equation is only
valid for a specific range of reduced frequency. This range of reduced
frequency scales to a range of frequency (imaginary part of each
root) for a particular velocity. Figure 1b shows only the roots from
each solution, which have a frequency within the range for which
the aerodynamic force function was valid.

This technique allows the roots at a single velocity to be obtained
withoutdata from earlier velocities. Another way to look at the same
datais illustratedin Figs. 2a and 2b. In this case the root frequencies
for a single “mode” are plotted vs velocity. There is a corresponding

damping curve not shown. A mode implies a tracking operation to
determine how to connecta root from one velocity to the next. One
tracking scheme extrapolates to determine the expected eigenvalue
at the next velocity and then matches the actual eigenvalue that is
closestto theexpectedvalue. This techniqueisused when acomplete
flutter solutionis desired, not just the roots at a single velocity. Note
that for a given mode the curve computed from each piecewise
flutter equation will begin at nearly the same point (they all start at
the natural frequency at zero velocity). Figure 2a shows the roots
for a given mode for all velocities and all of the piecewise flutter
equations. Figure 2b shows only the roots, which have a frequency
within the range for which the aerodynamic force function was
valid.

The piecewise aerodynamic force functions are continuous from
one range of reduced frequency to the next, but the quadratic func-
tion used to define them changes. Thus the eigenvalues of each of
the piecewise flutter equations are not necessarily continuous,i.e.,
the eigenvaluesfor each functionat the crossoverreduced frequency
may differ. This can cause two problems: overlapsand gaps. Figure 3
illustrates these two problems graphically. Both of these situations
are easily handled by accepting the eigenvalues from both and aver-
aging the eigenvalues. A simple method to determine the weighting
factorsis based on the number of pointsinvolved. With one point the

factors are (4, 1), with two points, the factors are (%, +) and (3, 2),
etc.
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Fig. 5¢ Piecewise solutions that make up the PA flutter solution for mode 5 for the cantilevered lifting surface test case at 0.9 Mach with six symmetric
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Results

The PA flutter method was applied to a cantileveredlifting surface
with symmetric boundary conditions. The analysis was done for
0.9 Mach at sea level with six flexible modes. The lifting surface
planform has a span of 96.1 in. (244.1 cm), a root chord of 112.3in.
(285.2 cm), and a tip chord of 40.8 in. (103.6 cm). It has a sweep
angle of 44.1 deg. The lifting surface was modeled with 13 boxes
in the spanwise direction and 18 boxes in the chordwise direction.
A reference chord of 85.28 in. (216.6 cm) was used in the unsteady
aerodynamiccomputations. The aerodynamicinfluence coefficients
were computed for 11 reduced frequenciesranging from 0.8 to 5.0.
The six flexible modes have natural frequencies of 10.75, 11.10,
31.78,45.75,72.65, and 93.21 Hz. A p-k flutter analysis was also
done on this model for comparison. The p-k solution is shown in
Fig. 4. There is a tracking error in the p-k solution for mode 2.
Iterated to mode 1, and thus two solutions were obtained for mode
1 at that velocity.

Each mode in a PA flutter solution is made up from the solu-
tion of several piecewise flutter equations, each of which is only
valid for a specific range of reduced frequency. The solutions that

make up modes 2, 3, and 5 are shown in Figs. 5a-5c. The lines
for the reduced frequency ranges are also shown. A “gap” oc-
curs for mode 3 in Fig. 5b, and an “overlap” occurs in Figure
5c. Again these may occur in the transition from one piecewise
flutter equation to the next. The averaging scheme does a good
job in the transition. These gaps and overlaps are caused by dis-
continuities in the piecewise aerodynamic functions. The discon-
tinuities are affected by the choice of the reduced frequencies for
which the aerodynamics are computed. This choice is important
for all flutter methods and is especially important for the PA flutter
method.

A direct comparison between the PA flutter solution and the p-k
flutter solution for modes 2, 3, and 5 is given in Fig. 6. The dif-
ference between the two solutions increases where there is more
damping. This is because of the differencein the representation of
the aerodynamic forces. The aecrodynamic forces in the p-k flutter
equation are the same for damped motion as for oscillatory motion.
The aerodynamic forces in the PA flutter equation approximate the
forces for damped motion as is done for transient flutter with RFA
aerodynamics.
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Fig. 6 Comparison of the p-k flutter solution and the PA flutter solution for modes 2, 3, and 5 for the cantilevered lifting surface test case at 0.9 Mach

with six symmetric modes.
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Fig. 7 PA flutter solution for the cantilevered lifting surface test case at 0.9 Mach with six symmetric modes.

The complete PA flutter solution is given in Fig. 7. The char-
acter of the PA flutter solutions (the shape of the frequency and
damping curves) is very similar to the p-k solution as is to be
expected. The flutter crossing (g =0.0) for the two methods dif-
fer by only 0.025% in velocity and 0.1% in frequency. The CPU
time required for the PA solution was approximately 25% of the
CPU time required for the p-k solution. These savings in compu-
tational time are achieved by virtue of the noniterative nature of
the PA flutter method. All of the required data are computed with a
fixed number of complex eigenvalue solutions. The individual so-
lutions are sorted so that each mode is “tracked” as velocity varies.
Then it is determined which parts from each solution are valid for
a given mode. At the same time the overlaps and gaps are handled
with the averaging scheme. This results in a complete PA flutter
solution.

Conclusions

The PA flutter method uses the piecewise quadratic interpolation
function commonly used for k-method flutter solutions and con-

cepts from transient flutter and the p—k method. A piecewise flutter
equation is defined that utilizes a very good approximation to the
aerodynamic forces. The substitution of a scaled Laplace variable
for the reduced frequency is the same approximationused for tran-
sient flutter with RFA aerodynamics. By defining this piecewise
flutter equation, all of the flutter eigenvalues are computed with a
fixed number of general matrix eigenvalue solutions. The eigenval-
ues computed from each of the piecewise flutter equations with a
frequency within the range valid for that equation are accepted. This
is the same basic concept behind the p-k flutter method.

The iterative nature of the p-k method can be costly in terms
of computerresources and can also resultin convergenceproblems.
The PA flutter method provides an accurate damping flutter solution
withoutiterating. The piecewisenature of the PA flutter method does
createsome continuityissues. These are easily handled by averaging
the solutions as they transition from one range of reduced frequency
to the next.

The PA flutter method allows the computation of accurate damp-
ing flutter solutions without iterating. This greatly reduces the
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computer resources (CPU time) required to obtain the accurate
damping flutter solution and enhances its reliability.
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