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Accurate Subcritical Damping Solution of Flutter Equation
Using Piecewise Aerodynamic Function

Charles Goodman¤

The Boeing Company, St. Louis, Missouri 63166-0516

An alternative to the p–k method for accurate subcritical damping solution is presented. By combining the
concepts used in rational function aerodynamics and using the piecewise aerodynamic interpolation function
commonly used for the k method, a piecewise aerodynamic � utter equation is de� ned, which provides for accurate
noncritical damping. A solution of the piecewise � utter equation is described, which is noniterative and which can
be used to get results at a single velocity. The resulting � utter method provides a solution of the � utter equation
with accurate subcritical damping that is ef� cient and reliable.

Nomenclature
Am; ¯m ¡ 2 = coef� cients in the rational function approximation

(RFA)
A j

m = piecewise quadratic generalized aerodynamic
force interpolation function coef� cients

b0 = reference length
g = added structural damping for k method
Im( ) = imaginary part of complex number
i = imaginary constant D sqrt(¡1)
k = reduced frequency (b0!=V )
k j ; k j C1 = range of reduced frequency
M; K = generalized mass and stiffness
Q.k/ = generalized aerodynamic forces as computed

by the doublet lattice method
OQ ik .ik/ = RFA for generalized aerodynamic forces
OQ j

k .k/ = piecewise quadratic generalized aerodynamic
forces interpolation function

OQs.s/ = RFA for generalized aerodynamic forces in the
Laplace domain

OQ j
s .s/ = piecewise quadratic generalized aerodynamic

forces function
q = generalized coordinate
s; p = Laplace variable
V ; ½ = velocity and density
! = circular frequency

Introduction

F LUTTER is instability caused by the coupling of aerodynamic
forces with the structural forces of a � exible structure. There

are three principal interests in analysis of the � utter phenomenon.
The � rst is the calculationof the velocity at the onset of � utter. The
second is the trend of the modal frequency and damping charac-
teristics vs velocity before the onset of � utter. The third interest in
� utter is the interaction of these forces with a control system.

The velocity at the onset of � utter is the point at which the cou-
pling of the structural forces and the aerodynamic forces cause the
system to become unstable. The k method � utter solution1 is the
most common techniqueused for this analysis. This method is very
reliable and cost effective. A spline is typically used to interpolate
the aerodynamic forces for a large list of reduced frequencies. A
solution is computed at each reduced frequency, and the roots must
then be sorted. However, for this method, only the � utter crossing
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is correct. The frequency and damping values before and after the
crossing are not reliable.

Subcritical frequencyand damping results can be compared with
measured data to evaluate the accuracy of the analyticalmodels and
thus the accuracy of the predicted � utter velocity. Also, an experi-
enced � utter analyst may draw conclusions from the frequencyand
damping vs velocity curves that lead to structural modi� cations to
extend the � utter velocity.In both cases, the frequencyand damping
values should be as accurate as possible.

Two methodsare most commonlyused to obtainaccuratesubcrit-
ical damping for a � exible aircraft, the p–k method, and transient
� utter. The p–k method2 repeatedly interpolates for the required
aerodynamicsas it iterates to � nd each eigenvalue.A spline or other
function is de� ned to interpolate the aerodynamics to the required
reduced frequency, which is determined from the eigenvalue from
the previous iteration. The p–k method is more costly than the k
method and problems with convergencecan occur. Transient � utter
uses a rational function approximation (RFA) of the aerodynamic
forces.3 This method tries to de� ne a single function to represent the
aerodynamic forces over a wide range of reduced frequency. This
step can be dif� cult and time consuming. However, once the RFA
is de� ned the � utter solution is straightforward.

The interaction of an aeroelastic system with a control system is
known as aeroservoelasticity (ASE). The most common approach
to ASE is to create a linear differentialequation,in state-spaceform,
of the aeroelastic dynamics so that it can be easily coupled with a
linear model of the control system, also in state-space form. There
are three primary methods used to create this model. The � rst and
most commonmethodis basedon RFA aerodynamics,as in transient
� utter. For ASE the de� nitionof the systeminputs (control surfaces)
and outputs (control sensors) is additionally required. The second
methodis implementedin theFAMUSS (FlexibleAircraftModeling
Using State Space) program,4 and uses an equivalentsystemmethod
to create the ASE model. This techniqueuses an eigenvaluesolution
of the � utterequationwith accuratefrequencyanddampingto de� ne
the dynamic matrix of the state-space model. The rest of the ASE
model is de� ned by a � t of the transfer function responses. The
third method is the P-transform method.5 It also requires a � utter
solution with accurate frequency and damping to de� ne the state-
space dynamic matrix and makes use of the � utter eigenvectors to
create the rest of the ASE model.

Background on Various Flutter Solution Methods
The basic aeroelastic equations of motion are given by Eq. (1). It

is usually de� ned in generalizedor modal coordinates to reduce the
number of degrees of freedom.

M Rq C K q ¡ 1
2 ½V 2 Q.k/q D 0 (1)

The aerodynamic forces Q.k/ are a function of reduced fre-
quency. The use of these aerodynamics is in and of itself an
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approximation because they are only valid for oscillatory motion.
Also, they are typically computed at a list of discrete reduced fre-
quencies. Thus, a direct solution of Eq. (1) is not possible. To solve
it, some approximation of these aerodynamics must be done. The
three commonly used solutions are the k method, the p–k method,
and transient � utter. The primary differences in these methods are
the type of damping and the treatment of the aerodynamics.

k Method Flutter

The k-method � utter equation is given by Eq. (2). The damping
here is addedstructuraldamping, the inertiaand aerodynamicforces
are for purely oscillatory motion.

M ¡ [.1 C ig/=!2]K C ½b2
0 2k2 Q.k/ q D 0 (2)

The aerodynamic forces Q.k/ are typically computed for a small
set of discrete reduced frequencies and then interpolated to a larger
set of reducedfrequencies.The equationis then solvedfor the eigen-
value ¸ D .1 C ig/=!2 at each interpolated reduced frequency. The
frequencyanddampingcharacteristicscomedirectlyfromtheeigen-
value,but thevelocityis computedfrom the reducedfrequencygiven
the eigenvalue frequency.

p–k Method Flutter

The p–k method � utter equation is given by Eq. (3). The damp-
ing here is a rate-of-decay type but is only applied to the inertia
forces. The inertia forces are for damped motion, but the aerody-
namic forces are treated as complex stiffness and therefore are only
for purely oscillatory motion.

Mp2 C K ¡ 1
2 ½V 2 Q.k/ q D 0 (3)

Fig. 1a Roots xj from all of the piecewise � utter equations (where the
aerodynamic forces are valid from kj to kj + 1) at a single velocity.

Fig. 1b Collection of roots with valid frequencies at a single velocity.

An iterative scheme is used to � nd each eigenvalue at a given
velocity and density. At each iteration new aerodynamic forces are
obtained using a spline or other interpolation function based on
the eigenvalue frequency from the earlier iteration. The iterations
continue until the eigenvalue frequency converges. This iterative
method requires an initial estimate of the imaginary part of each
eigenvalue. These are typically determined by extrapolating from
results at preceding velocities. The natural frequencies are used to
estimate the reduced frequency at the � rst velocity.

Transient Flutter Method

The transient � utter equation [Eq. (4)] is effectively the direct
Laplace transformationof Eq. (1). Thus the damping is true Laplace
damping, and both the inertia forces and the aerodynamicforces are
for damped motion.

Ms2 C K ¡ 1
2 ½V 2 OQs.s/ q D 0 (4)

This equation requires the unsteadyaerodynamic forces to be ex-
pressed in the Laplace domain, which are not typically available
and are therefore approximated. An RFA is used for the aerody-
namic forces. The RFA de� nes an equation that describes the aero-
dynamic forces over a wide range of frequency. A typical RFA
uses a quadratic with additional lag terms. A � t of a set of known
aerodynamicsdetermines the coef� cients of the equation. Once de-
termined, the RFA equation, which was based on oscillatory aero-
dynamic forces, is used as an approximation of the aerodynamic
forces for damped motion. At this point the solution of the � utter
equation is straightforward.

Fig. 2a Tracking a single mode (root xj ) as velocity varies from all of
the piecewise � utter equations (where the aerodynamic forces are valid
from kj to kj + 1 ).

Fig. 2b Collection of roots with valid frequencies that have been
tracked as velocity varies.
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Fig. 3 Discontinuity in the � utter equation from one range of reduced
frequency to the next may cause overlaps and gaps.

Fig. 4 p–k � utter solution for the cantilevered lifting surface test case at 0.9 Mach with six symmetric modes.

Background on the Various Treatments
of the Aerodynamics

Each of the � utter solutionmethods just discussed treats the aero-
dynamics in a unique way. Each method must do this because the
unsteady aerodynamics are not typically available in the Laplace
domain. The most common method of producing the aerodynamic
forces is the doublet lattice method,6 which is only valid for oscilla-
tory motion.This method de� nes the aerodynamicforces at speci� c
reduced frequencies. Because of the signi� cant computer resource
costs, the list of reduced frequenciesat which they are computed is
typically rather small, around 10. Cunningham and Desmarais gen-
eralizedthe subsonicunsteadyaerodynamickernel function into the
Laplace domain.7 Their method provides a means of de� ning aero-
dynamic forces for dampedmotion, but they must be computedover
a two-dimensional space, frequency and damping, which greatly
increases the computational costs.

Piecewise Interpolation Function

One treatment of the aerodynamicsde� nes an interpolationfunc-
tion that canbeused to approximatetheaerodynamicsatany reduced
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frequency within the original range. Generally the interpolation
function is a piecewise quadratic or cubic spline de� ning an in-
terpolation function for each interval of reduced frequency. This is
commonly used in both k-method � utter solutions and p–k method
solutions.

Equation (5) gives a typical quadratic piecewise interpolation
function for a k-method � utter solution. The coef� cients for each
interval of reduced frequency are computed using four points, two
on each side, and is referred to as an averaged quadratic.

OQ j
k .k/ D

2

m D 0

.k/m A j
m ; k j · k · k j C 1 (5)

Each function matches the aerodynamic forces at the end points
of its interval. The � rst and last intervals use three points. Unlike a
cubic spline no constraints are placed on the function derivatives.

Rational Function Approximation

Another treatment of the unsteady aerodynamic forces is with
an RFA. This technique is similar to the interpolation function just
described except this method de� nes a single function that approx-
imates the unsteady aerodynamic forces over the entire range of
reduced frequenciesfor which they have been computed.Lag terms
are added to enable the functionto be used for the entire reduced fre-

Fig. 5a Piecewise solutions that make up the PA � utter solution for mode 2 for the cantilevered lifting surface test case at 0.9 Mach with six symmetric
modes.

quency range. The coef� cients are typically determined by a least-
squares � t of the computed aerodynamic forces. It may be dif� cult
to de� ne an equation that � ts the aerodynamic forces adequately
over the entire range of reduced frequency.

Equation (6) gives a typical RFA representation of the unsteady
aerodynamics as a function of reduced frequency (with imaginary
value included). Key to the accuracy of the � t is the number of lag
terms and the choice of lag constants ¯m ¡ 2.

OQi k.ik/ D
2

m D 0

.ik/m Am C
6

m D 3

.ik/Am

.ik/ C ¯m ¡ 2

(6)

Other RFA representations optimize the lag constants or use a
state-space notation that de� nes a lag matrix. The RFA function is
still only valid for purely oscillatorymotion. Regardlessof the form
of theRFA, it canbeused to approximatetheunsteadyaerodynamics
in the Laplace domain by substituting the scaled complex Laplace
variable (sb0=V ) for the imaginary value (ik) [Eq. (7)].

OQs.s/ D
2

m D 0

sm b0

V

m

Am C
6

m D 3

.s/Am

.s/ C ¯m ¡ 2.V=b0/
(7)

The substitution of a scaled Laplace variable for the reduced
frequencyis usedforbothASE and transient� utter.This substitution
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was determined by Cunningham and Desmarais to be fairly good
for low reduced frequenciesand low damping.7 It approximates the
aerodynamic forces for damped motion from those computed for
oscillatory motion. This differs somewhat from simply using the
oscillatory aerodynamic forces for damped motion as done in the
p–k � utter method.

Piecewise Aerodynamic Flutter Method
The piecewise aerodynamic (PA) � utter method makes use of

concepts utilized in the k-method � utter solution, in transient � utter
using RFA and in the p–k � utter method. The PA interpolationfunc-
tion used for the k method de� nes the aerodynamic forces for each
interval of reduced frequency.Each equation,one for each range of
reduced frequency, is used to approximate the aerodynamic forces
in the Laplace domain as done with RFA aerodynamicsfor transient
� utter. The roots of each of these equations are solved with generic
matrix methods. The roots with a frequency within the range for
which the aerodynamicswere valid are accepted as done in the p–k
method.

A substitution similar to that used for RFA [Eqs. (6) and (7)]
is applied to each k-method aerodynamic interpolation function
[Eq. (5)] to de� ne the aerodynamic forces in the Laplace domain.
Equation (8) de� nes these approximatedaerodynamic forces in the
Laplacedomainby substitutingthe scaledcomplexLaplacevariable
sb0=iV for the real reduced frequency k. Each of these functions is

Fig. 5b Piecewise solutions that make up the PA � utter solution for mode 3 for the cantilevered lifting surface test case at 0.9 Mach with six symmetric
modes.

effectivelyan RFA with no lags. No lag terms are required because
the function must only match the computed aerodynamic forces at
two reduced frequencies, but each is only valid for the speci� ed
range of frequency.The imaginary portion of the Laplace variable,
frequencyof oscillation,is used to determinewhen the aerodynamic
forces are valid.

OQ j
s .s/ D

2

m D 0

sm b0

iV

m

A j
m; k j ·

Im.s/b0

V
· k j C 1 (8)

This aerodynamic force function is inserted into the Laplace � ut-
ter equation used for transient � utter [Eq. (4)] resulting in Eq. (9).
Now we have a series of Laplace domain equations each of which
are valid for frequency of oscillationswithin a range de� ned by the
interval of reduced frequency.

M ¡ 1
2
V 2.b0=iV /2 A j

2 s2 ¡ 1
2
V 2.b0=iV /A j

1.s/

C K ¡ 1
2
V 2 A j

0 q D 0; k j · Im.s/b0=V · k j C 1 (9)

When each of these equations is solved for its roots, only those
roots with frequencies within the range of reduced frequency for
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which the aerodynamics are valid are in fact a solution to the equa-
tion. This is similar to the p–k method that iterates until a root is
found that has a frequency matching the reduced frequency of the
aerodynamics,which were used. The difference in the PA method is
that all of the roots for each piecewise � utter equationare computed
using generic matrix methods, which do not require iteration, and
then only those roots in the proper frequency range are accepted.
Thus all roots are found with N -1 eigenvalue solutions, where N
is the number of reduced frequencies for which the aerodynamic
forces were computed.

The rest of this section uses � ctionalized data created for the
purposeof demonstratingthe PA � utter methodand do not represent
an actual test case.

Figure 1a shows a collectionof roots plotted in the complex plane
from the solution of each of three piecewise � utter equations. In
this � ctional example there are � ve modes. Each equation is only
valid for a speci� c rangeof reducedfrequency.This rangeof reduced
frequency scales to a range of frequency (imaginary part of each
root) for a particular velocity. Figure 1b shows only the roots from
each solution, which have a frequency within the range for which
the aerodynamic force function was valid.

This technique allows the roots at a single velocity to be obtained
without data from earliervelocities.Anotherway to look at the same
data is illustratedin Figs. 2a and 2b. In this case the root frequencies
for a single “mode” are plotted vs velocity.There is a corresponding

Fig. 5c Piecewise solutions that make up the PA � utter solution for mode 5 for the cantilevered lifting surface test case at 0.9 Mach with six symmetric
modes.

damping curve not shown. A mode implies a tracking operation to
determine how to connect a root from one velocity to the next. One
tracking scheme extrapolates to determine the expected eigenvalue
at the next velocity and then matches the actual eigenvalue that is
closestto theexpectedvalue.This techniqueisusedwhenacomplete
� utter solution is desired, not just the roots at a single velocity.Note
that for a given mode the curve computed from each piecewise
� utter equation will begin at nearly the same point (they all start at
the natural frequency at zero velocity). Figure 2a shows the roots
for a given mode for all velocities and all of the piecewise � utter
equations. Figure 2b shows only the roots, which have a frequency
within the range for which the aerodynamic force function was
valid.

The piecewise aerodynamic force functions are continuous from
one range of reduced frequency to the next, but the quadratic func-
tion used to de� ne them changes. Thus the eigenvalues of each of
the piecewise � utter equations are not necessarily continuous, i.e.,
the eigenvaluesfor each functionat the crossoverreduced frequency
may differ.This cancause two problems:overlapsandgaps.Figure 3
illustrates these two problems graphically. Both of these situations
are easily handledby accepting the eigenvalues from both and aver-
aging the eigenvalues.A simple method to determine the weighting
factors is basedon the numberof points involved.With one point the
factors are ( 1

2 , 1
2
), with two points, the factors are ( 2

3 , 1
3
) and ( 1

3 , 2
3
),

etc.
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Results
The PA � utter methodwas applied to a cantileveredliftingsurface

with symmetric boundary conditions. The analysis was done for
0.9 Mach at sea level with six � exible modes. The lifting surface
planform has a span of 96.1 in. (244.1 cm), a root chord of 112.3 in.
(285.2 cm), and a tip chord of 40.8 in. (103.6 cm). It has a sweep
angle of 44.1 deg. The lifting surface was modeled with 13 boxes
in the spanwise direction and 18 boxes in the chordwise direction.
A reference chord of 85.28 in. (216.6 cm) was used in the unsteady
aerodynamiccomputations.The aerodynamicin� uencecoef� cients
were computed for 11 reduced frequencies ranging from 0.8 to 5.0.
The six � exible modes have natural frequencies of 10.75, 11.10,
31.78, 45.75, 72.65, and 93.21 Hz. A p–k � utter analysis was also
done on this model for comparison. The p–k solution is shown in
Fig. 4. There is a tracking error in the p–k solution for mode 2.
Iterated to mode 1, and thus two solutions were obtained for mode
1 at that velocity.

Each mode in a PA � utter solution is made up from the solu-
tion of several piecewise � utter equations, each of which is only
valid for a speci� c range of reduced frequency. The solutions that

Fig. 6 Comparison of the p–k � utter solution and the PA � utter solution for modes 2, 3, and 5 for the cantilevered lifting surface test case at 0.9 Mach
with six symmetric modes.

make up modes 2, 3, and 5 are shown in Figs. 5a–5c. The lines
for the reduced frequency ranges are also shown. A “gap” oc-
curs for mode 3 in Fig. 5b, and an “overlap” occurs in Figure
5c. Again these may occur in the transition from one piecewise
� utter equation to the next. The averaging scheme does a good
job in the transition. These gaps and overlaps are caused by dis-
continuities in the piecewise aerodynamic functions. The discon-
tinuities are affected by the choice of the reduced frequencies for
which the aerodynamics are computed. This choice is important
for all � utter methods and is especially important for the PA � utter
method.

A direct comparison between the PA � utter solution and the p–k
� utter solution for modes 2, 3, and 5 is given in Fig. 6. The dif-
ference between the two solutions increases where there is more
damping. This is because of the difference in the representation of
the aerodynamic forces. The aerodynamic forces in the p–k � utter
equation are the same for damped motion as for oscillatorymotion.
The aerodynamic forces in the PA � utter equation approximate the
forces for damped motion as is done for transient � utter with RFA
aerodynamics.
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Fig. 7 PA � utter solution for the cantilevered lifting surface test case at 0.9 Mach with six symmetric modes.

The complete PA � utter solution is given in Fig. 7. The char-
acter of the PA � utter solutions (the shape of the frequency and
damping curves) is very similar to the p–k solution as is to be
expected. The � utter crossing (g D 0:0) for the two methods dif-
fer by only 0.025% in velocity and 0.1% in frequency. The CPU
time required for the PA solution was approximately 25% of the
CPU time required for the p–k solution. These savings in compu-
tational time are achieved by virtue of the noniterative nature of
the PA � utter method. All of the required data are computed with a
� xed number of complex eigenvalue solutions. The individual so-
lutions are sorted so that each mode is “tracked” as velocity varies.
Then it is determined which parts from each solution are valid for
a given mode. At the same time the overlaps and gaps are handled
with the averaging scheme. This results in a complete PA � utter
solution.

Conclusions
The PA � utter method uses the piecewise quadratic interpolation

function commonly used for k-method � utter solutions and con-

cepts from transient � utter and the p–k method. A piecewise � utter
equation is de� ned that utilizes a very good approximation to the
aerodynamic forces. The substitution of a scaled Laplace variable
for the reduced frequency is the same approximationused for tran-
sient � utter with RFA aerodynamics. By de� ning this piecewise
� utter equation, all of the � utter eigenvalues are computed with a
� xed number of general matrix eigenvalue solutions.The eigenval-
ues computed from each of the piecewise � utter equations with a
frequencywithin the range valid for that equationare accepted.This
is the same basic concept behind the p–k � utter method.

The iterative nature of the p–k method can be costly in terms
of computer resourcesand can also result in convergenceproblems.
The PA � utter methodprovidesan accuratedamping � utter solution
without iterating.The piecewisenatureof thePA � uttermethoddoes
createsomecontinuityissues.These are easilyhandledbyaveraging
the solutionsas they transitionfrom one range of reduced frequency
to the next.

The PA � utter method allows the computationof accurate damp-
ing � utter solutions without iterating. This greatly reduces the



GOODMAN 763

computer resources (CPU time) required to obtain the accurate
damping � utter solution and enhances its reliability.
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